

Инфракрасный пирометр **КЕЛЬВИН RXT**

Руководство по эксплуатации

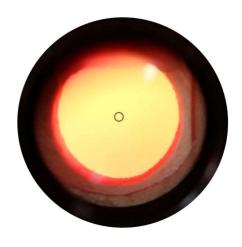
СОДЕРЖАНИЕ

1. Общие указания	3
2. Назначение	3
3. Общие технические характеристики	3
4. Принцип работы	3
5. Поле зрения	3
6. Излучательная способность объекта	4
7. Порядок работы	5
8. Справочная таблица режимов и показаний индикатора	9
9. Температурные условия работы прибора	10
10. Маркировка	10
11. Упаковка	10
12. Хранение	10
13. Транспортирование	10
14. Техническое обслуживание	10
15. Сведения о калибровке	10

1. ОБЩИЕ УКАЗАНИЯ

- **1.1.** Настоящее руководство предназначено для ознакомления с инфракрасным бесконтактным пирометром **Кельвин RXT** (далее **Кельвин**) и содержит рекомендации по его применению.
 - 1.2. Настоящий документ содержит техническое описание и инструкцию по эксплуатации.
- 1.3. Перед работой с прибором необходимо внимательно ознакомиться с техническим описанием и инструкцией по эксплуатации.

2. НАЗНАЧЕНИЕ

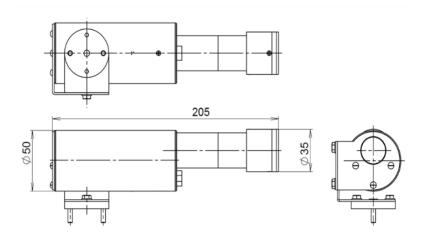

Инфракрасный пирометр предназначен для бесконтактного измерения температуры поверхности. Применяется для контроля температуры в технологических процессах металлургии, стекольного производства, машиностроения, производства композитных материалов, коксохимии и т.д.

3. ОБЩИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1. Диапазон измерения	Кельвин RXT 1300	+400+1300 °C	
	Кельвин RXT 1600	+500+1600 °C	
	Кельвин RXT 2300	+600+2300°C	
	Кельвин RXT 3000	+800+3000 <i>°</i> C	
3.2. Предел	относительной погрешности	±(0,01xT) °C	
3.3. Разрешение по температ	руре	1 °C	
3.4. Показатель визирования		1:400	
3.5. Диапазон установки излу	0,011,00		
3.6. Время измерения	0.15 сек		
3.8. Питание	24B		
3.9. Потребляемая мощност	не более 0,2 Вт		
3.10. Габаритные размеры (д.	250x50x35		
3.11. Масса прибора	0,2 кг		
3.12. Корпус	IP 65		
3.13. Цифровой выход	RS485		

4. ПРИНЦИП РАБОТЫ

Приемник Кельвин преобразует энергию ИК-излучения, излучаемую поверхностью объекта, в электрический сигнал. Затем эта информация преобразуется в температурные данные. Наведение на объект — оптическое, в поле зрения присутствует прицельная марка круглой формы, размер которой указывает на размер линейного поля зрения пирометра.



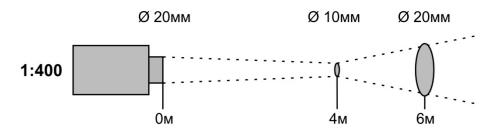
Для ослабления яркого излучения от сильно нагретых объектов используется поляризационный светофильтр, который смонтирован на окуляре пирометра. При слишком ярком свечении объекта пользователь вращением кольца светофильтра на окуляре добивается его ослабления до комфортного наблюдения.

В Кельвине предусмотрена автоматическая компенсация температуры окружающей среды. Цифровая установка излучательной способности объектов (ϵ) (см. п.6 и Таблицу 1) обеспечивает точность измерения.

5. ПОЛЕ ЗРЕНИЯ

<u>Поле зрения</u> — измеряемый диаметр объекта, с поверхности которого **Кельвин** принимает энергию инфракрасного излучения.

<u>Измеряемый диаметр объекта</u> определяется показателем визирования расстояния до инфракрасного пирометра:


и зависит от

Измеряемый диаметр объекта = показатель визирования х расстояние до объекта

<u>Минимальный измеряемый диаметр</u> - наименьший диаметр объекта, который может быть измерен при данном фокусном расстоянии и размере приемника. При увеличении или уменьшении расстояния измеряемый диаметр возрастает. При приближении к объекту вплотную измеряемый диаметр увеличивается до размеров входного зрачка прибора.

Индицируемая "Кельвином" температура будет не верна, если размер объекта меньше поля зрения. Так как объект, температура которого должна быть измерена, не заполняет все поле зрения, прибор

принимает излучение от других объектов окружающей среды, которое оказывает влияние на точность измерения.

6. ИЗЛУЧАТЕЛЬНАЯ СПОСОБНОСТЬ ОБЪЕКТА

Излучательной способностью объекта называется отношение мощности излучения объекта при данной температуре к мощности излучения абсолютно черного тела (АЧТ). АЧТ определяется как поверхность, излучающая максимальное количество энергии при данной температуре. Излучательная способность АЧТ равна 1,00

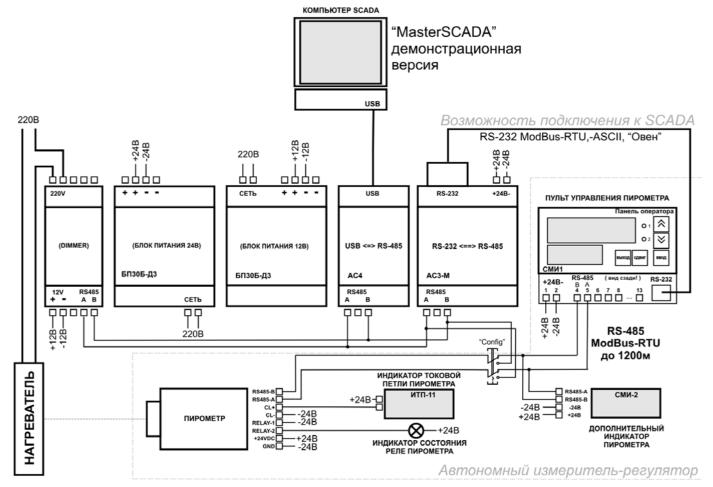
Излучательные свойства объекта определяются свойствами материала и чистотой обработки поверхности объекта, а не цветом его поверхности. В Таблице 1 приведены типичные значения излучательной способности некоторых материалов. Излучательная способность

є большинства органических материалов (дерево, пластики, краски и т.д.) равна приблизительно 0,95. Полированные металлические поверхности могут иметь излучательную способность близкую нулю, что затрудняет применение пирометрического метода измерения температуры.

Полная информация предоставлена на стр. 19 и на нашем сайте www.zaoeuromix.ru.

Если излучательная способность объекта неизвестна, то ее можно определить с помощью следующего метода:

- 6.1. Образец материала нагревается до определенной температуры, как-либо точно измеренной.
- **6.2.** Температура поверхности образца измеряется Кельвином. Значение излучательной способности подбирается (см. п.7.2.1) до тех пор, пока индикатор прибора не покажет известную температуру образца.
- 6.3. Найденное значение излучательной способности фиксируется и используется для дальнейших измерений температуры этого материала.


7. ПОРЯДОК РАБОТЫ

Прибор имеет следующие режимы работы:

- 1. Пирометрический датчик с высокой скоростью измерения температуры (0.15 с) с подключением "точка-точка" по RS485, до 1200м. Область применения: исследования, измерение движущихся нагретых заготовок и т.п. Данные идут по гальванически развязанному RS-485 «точкаточка» (работа в RS-485 с адресацией по протоколу ModBus не позволяет непрерывно передавать замеры с такой скоростью). В данном варианте также работают и выход «Токовая петля», и выход полупроводникового реле, но по тем настройкам, которые ЗАРАНЕЕ были записаны в памяти прибора. Изменять эти настройки без пульта оператора (поставляется опционально) нельзя то есть настроили пирометрический датчик с помощью пульта оператора из комплекта прибора, перевели его с помощью специальной процедуры в режим «Fast ASCII» (с пультом датчик работает по ModBus RTU), и далее он может эксплуатироваться отдельно. Регулировать далее можно только значение коэффициента теплового излучения через ПК или контроллер с интерфейсом RS-485 (или RS-232), к которому подключен датчик.
- Работа в качестве автономной системы для измерения температуры с возможностью подключения аналогового самописца и простого регулирования нагрева или сигнализации о превышении заданной температуры. Ручное управление с помощью Пульта управления (например, ОВЕН СМИ-1). Состав: пирометрический датчик, дополнительный выносной индикатор температуры (поставляется опционально, их может быть несколько) и пульт оператора (поставляется опционально). Обмен данными по RS-485, протокол ModBus RTU формат 9600-n-8-1. К пирометрическому датчику могут быть подключены регистратор (или индикатор) с аналоговым интерфейсом «Токовая петля», и схема управления нагревателем (или сигнализации превышения пороговой температуры). С помощью пульта управления оператор может контролировать и задавать все требуемые параметры. Дополнительный выносной индикатор (например, ОВЕН СМИ-2) позволяет продублировать индикацию текущей измеряемой температуры. Все заданные настройки сохраняются в энергонезависимой памяти пульта. Управление нагревателем с целью поддержания измеряемой температуры в заданном диапазоне происходит по простому «гистерезисному» алгоритму. Оператор может выставить требуемые границы температуры. Нагреватель с помощью выходных контактов полупроводникового реле выносной головки (через внешние силовые цепи!) будет включаться в случае падения измеряемой температуры ниже нижнего заданного порога, и отключаться при превышении верхнего заданного порога.
- **3.** Работа в составе АСУ ТП (SCADA) по интерфейсу RS-485. Состав системы аналогичен варианту 2. Подключение к SCADA по интерфейсу RS-485 и внешний конвертер RS-232 <-> RS-485 через не занятый порт RS-232 пульта оператора (СМИ-1). Пульт оператора предусматривает работу в составе систем по протоколам **Modbus-ASCII**, **Modbus-RTU**, **OWEN** и гарантированно совместим с современными SCADA, работающими через OPC.

В данном варианте пульту оператора с помощью его программы-конфигуратора задается адрес для работы в системе SCADA. В этом варианте остается возможность контроля и регулировки параметров RXR оператором с помощью пульта управления, но теперь контролировать и изменять параметры может и SCADA. Пульт оператора позволяет обеспечить перемычкой или замком с электрическими контактами блокирование изменений параметров оператором, т.е. при необходимости можно сделать, что технолог с пульта «на месте» настроит техпроцесс и блокирует возможность изменения настроек с пульта рабочим. Измеряемая температура отображается на пульте оператора, на выносном индикаторе и поступает в систему SCADA. Там она регистрируется и применяется для автоматического управления техпроцессом - например, стабилизируя температуру нагреваемого объекта регулировкой по ПИД алгоритму мощности нагрева через нагреватель, подключенный к SCADA по RS-485 ModBus-RTU.

Пример подключения (вариант 3)

СХЕМА ДЕМОНСТРАЦИОННОГО СТЕНДА

Маркировка кабеля			
Разъем Weipu SF12	Назначение	Цвет провода	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
1	RS-485 A	Оранжевый	
2	CL+ (4-20mA)	Бело-зеленый	
3	RELAY-1 (Реле 1)	Коричневый	
4	Не используется	-	
5	GND	Синий	
6	RS-485 B	Бело-оранжевый	
7	CL- (4-20mA)	Зеленый	
8	RELAY-2(Реле 2)	Бело-коричневый	
9	+24В (Питание)	Бело-синий	

7.1. Включение прибора.

Для того, чтобы включить прибор следует подать напряжение питания (24В) на соответствующие контакты.

Все установки прибора — значение излучательной способности, выбранный режим работы прибора, настройка сигнализации превышения порогового значения температуры, после отключения питания сохраняются.

7.2. Краткое описание работы в разных режимах.

1) Режим работы 1 "точка-точка" (как и другие), можно быть задан кодовой последовательностью из Руководство по эксплуатации на инфракрасный пирометр «КЕЛЬВИН» ТМ 7

ПК в пирометр с помощью обычной терминальной программы (через COM-порт и Упрощенный конвертер COM-RS-485 из комплекта).

В этом режиме пирометр будет непрерывно передавать замеры температуры и текущее значение "эпсилон" со скоростью 6 замеров в секунду (что обычно не достижимо при работе по стандартному интерфейсу RS-485, т.к. там обмен инициируется "мастером" и обычно не чаще 1 раза в 1 секунду).

Программное обеспечение приемной стороны может управлять излучательной способностью (или пирометр будет всегда работать с постоянным значением из своей энергонезависимой памяти). Такой программой может быть ПО от ЗАО "Евромикс" для работы с предыдущими моделями термометров Кельвин с RS-232.

Подключение к ПК или контроллеру может быть через порт RS-485, через СОМ-порт и полноценный конвертер COM-RS485, либо, при короткой линии связи, через Упрощенный конвертер COM-RS485 из комплекта поставки.

- 2) Режим работы 2 автономная система для измерения температуры с возможностью простого («гистерезисного») регулирования нагрева и подключения аналогового самописца. При поставке изделие приходит настроенным для такого режима работы. В этом режиме:
- в этом режиме.
- пирометр и дополнительный индикатор подключены к Пульту управления (ОВЕН СМИ1) по интерфейсу RS-485, до 1200 метров;
- пульт управления выполняет функции "Мастера", обеспечивая после включения системы 1) запись в пирометр значений параметров из энергонезависимой памяти пульта, 2) индикацию на своем дисплее нужных параметров, 3) передачу значения температуры из пирометра на дополнительный индикатор;

Оператор системы с помощью органов управления СМИ-1 может просматривать и изменять параметры системы:

- а) просматривать значение ИЗМЕРЕННОЙ ТЕМПЕРАТУРЫ (верх дисплея "1");
- б) просматривать и изменять установленное значение ИЗЛУЧАТЕЛЬНОЙ СПОСОБНОСТИ (низ дисплея "1" и параметр "EPSL")
- в) просматривать и изменять значения ВЕРХНЕЙ И НИЖНЕЙ ТЕМПЕРАТУРЫ РЕГУЛЯТОРА ("H---", "L---", верх и низ дисплея "2". Регулятор включает нагрев, если измеренная температура ниже нижней границы, и выключает нагрев, если измеренная температура выше верхней границы, или 9999 вне диапазона)
- г) просматривать и изменять режим ФИЛЬТРОВАНИЯ температуры ("FLtr",может быть "1"= выключен, "2-128" вывод среднего значения за заданное (2-128) количество замеров, "129-256" вывод максимального значения за заданное (2-128) количество замеров (время между замерами 160 мс, в режиме работы 1 ("Fast ASCII", "точка-точка") всегда передаются необработанные замеры);
- д) просматривать и изменять МИНИМАЛЬНЫЙ И МАКСИМАЛЬНЫЙ ТОК "токовой петли" ("CCCL", "CCCH" дискретно, значение единицы примерно 0,02 мА,
- 0 = минимальный ток, примерно 0.02 мA, число 1000 = максимальный ток, примерно 19.9 мA)
- е) просматривать и изменять ГРАНИЦЫ ШКАЛЫ ТЕМПЕРАТУРЫ для "токовой петли" ("СН--", "СL--", если измеренная температура будет ниже нижней границы то выводится минимальный ток, если выше верхней границы максимальный ток, в промежутке линейно).

Внимание!

- А) В случае неисправности измерительной части (отсутствия данных от PIC14000) пирометр выводит значение температуры «8888» признак аварии.
- Б) Если измеренная пирометром температура превышает верхнее значение для данной модели пирометра (т.е. "зашкаливание"), то пирометр выводит в RS-485 значение "9999" (исключение режим работы 1 там выводится в формате предыдущих моделей "DDDD").
- В случае "зашкаливания":
- если включен режим фильтрации "осреднение", даже одно значение "9999" за заданное количество замеров даёт "9999", т.к. правильным осреднение уже быть не может;
- выход на нагреватель/сигнализатор временно переходит в «выключено» до прекращения "зашкаливания".

Если включен режим фильтрации, когда выводимое пирометром значение зависит от установленного в настройке числа последовательных замеров, то выходное значение «9999» будет передаваться до тех пор, пока в учитываемых для фильтрации замерах есть хотя бы одно значение «9999».

На дополнительном индикаторе отображается измеренное значение температуры. Это значение может не совпадать со значением на индикаторе Пульта управления, т.к. оно соответствуют иному моменту времени. Расстояние от пирометра до пульта управления может быть до 1200 метров.

Дополнительный индикатор подключается к линии связи (витой паре) от пирометра к пульту управления. Пирометр, пульт управления и дополнительный индикатор(ы) могут быть запитаны как от одного блока питания, так и от разных, в зависимости от расстояния между ними (RS485 везде гальванически развязанный, требуется учитывать падение напряжения на проводах питания и возможные помехи при работе импульсных DC-DC с длинными проводами питания).

Пример настройки токовой петли. Хотим: "до 800 градусах Цельсия ток 8 мА, потом линейно, после 1200 градусов ток 12 мА".

- 1) устанавливаем параметры "CH--" = 0 (градус), "CL " = 1 (градус) "код" что идет калибровка минимального тока. Меняя параметр "CCCL" (0,1,2...), подбираем ток в токовой петле $8.00 \,\mathrm{mA}$;
- 2) устанавливаем параметры "СН--" = 1 (градус), "СL " = 0 (градус) "код" что идет калибровка максимального тока. Меняя параметр "СССН" (0,1,2...) подбираем ток в токовой петле 12.00 мА;
- 3) устанавливаем "СН--" в 1200, "СL_ " в 800 -требуемые температуры верха и низа шкалы для вывода в токовую петлю;
- 4) проверяем: измеренная температура 1000 градусов ток около 10.00 мА;

Если нужен выход «напряжение от X до Y Вольт», то применяем резистор нужного номинала в цепи "токовая петля", цепь гальванически отвязана. Следует заметить, что максимальное напряжение питания «токовой петли» не должно быть более 36 Вольт.

Для автоматического поддержания температуры измеряемого объекта выходы полупроводникового реле пирометра подключить к цепям управления нагревателем. Для включения нагревателя пирометр будет «замыкать контакты», для отключения - «размыкать». Полярность не имеет значения, ток до 50мА, напряжение до 42В.

Хотя выходы полупроводникового реле гальванически отвязаны, КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПОДКЛЮЧАТЬ К НИМ ЦЕПИ НА КОТОРЫХ <u>ВОЗМОЖНО</u> НАПРЯЖЕНИЕ ОТНОСИТЕЛЬНО «GND» ПРИБОРА БОЛЕЕ 42 Вольт!

Далее на пульте управления установить требуемые границы простого "гистерезисного" регулятора ("H---" - верхняя, "L_" - нижняя, в градусах).

3) Режим работы в составе SCADA.

Для работы в составе системы АСУ ТП следует к системе подключить в режиме "Slave" Пульт управления (ОВЕН СМИ-1), используя его второй порт. Это порт RS-232, поэтому для подключения к RS-485 SCADA следует применить конвертер RS-232 ⇔RS-485 (ОВЕН АС3-М).

Соответственно, программное обеспечение системы должно предусматривать запись нужных параметров в регистры СМИ-1 (излучательная способность, как минимум) и чтение параметров из регистров (значение измеренной температуры, как минимум).

8. СПРАВОЧНЫЕ ТАБЛИЦЫ

Таблица 1 Внутренние регистры пирометра (измерительной головки!) RXR ModBus RTU 9600-n-8-1 Адрес 37 Чтение командой 03 Read Holding Register Запись командой 06 Write Single Register

Адрес	Запись/Чтение	Условное имя	Тип данных	Примечание
1	Чтение (03)	TEMP	Целое без знака	Измеряемая температура
				(8888 = авария, 9999 = вне диапазона)
1	Запись (06)	EPS	Целое без знака	Запись «эпсилон» 1 100 соотв 0.01 1.00
2	Чтение (03)	EPS	Целое без знака	Чтение «эпсилон» 1 100 соотв 0.01 1.00
2	Запись (06)	Н	Целое без знака	Верхний порог температуры 0 1500
3	Запись (06)	L	Целое без знака	Нижний порог температуры 0 1500
4	Запись (06)	FLTR	Целое без знака	Фильтрация температуры 1 – отключено
				2128 – вывод среднего за 2128 замеров
				129256 – вывод максимума за 2128 замеров
5	Запись (06)	CH-	Целое без знака	Для токовой петли верхняя температура шкалы
				09999
6	Запись (06)	CL_	Целое без знака	Для токовой петли нижняя температура шкалы
				09999
7	Запись (06)	СССН	Целое без знака	Константа тока верх шкалы ток.петли 01000
8	Запись (06)	CCCL	Целое без знака	Константа тока низ шкалы ток.петли 01000

Таблица 2Внутренние регистры пульта RXR (СМИ-1, подключение к SCADA) ModBus RTU 9600-n-8-1 Aдрес 16Чтение командой 03 Read Holding Register Запись командой 06 Write Single Register

Адрес	Запись/Чтение	Условное имя	Тип данных	Примечание
0	Чтение (03)	TEMP	Целое без знака	Измеряемая температура
				(8888 = авария, 9999 = вне диапазона)
8	Чтение (03)	EPSILON	Целое без знака	Запись/чтение «эпсилон» 1 100 соотв 0.01
	Запись (06)			1.00
2	Чтение	EPS	Целое без знака	Чтение «эпсилон» 1 100 соотв 0.01 1.00
10	Чт(03) Зп (06)	LEVEL_HI	Целое без знака	Верхний порог температуры 0 1500
12	Чт(03) Зп (06)	LEVEL_LO	Целое без знака	Нижний порог температуры 0 1500
14	Чт(03) Зп (06)	FILTER	Целое без знака	Фильтрация температуры 1 – отключено
				2128 – вывод среднего за 2128 замеров
				129256 – вывод максимума за 2128 замеров
16	Чт(03) Зп (06)	CL_Hi	Целое без знака	Для токовой петли верхняя температура шкалы
				09999
18	Чт(03) Зп (06)	CL_LO	Целое без знака	Для токовой петли нижняя температура шкалы
				09999
20	Чт(03) Зп (06)	CL_CAL_Hi	Целое без знака	Константа тока верх шкалы ток.петли 01000
22	Чт(03) Зп (06)	CL_CAL_LO	Целое без знака	Константа тока низ шкалы ток.петли 01000

Таблица 3 Внутренние регистры диммера LD2-400RD ModBus RTU 9600-n-8-1 Agpec 247 Чтение командой 03 Read Holding Register Запись командой 06 Write Single Register

-пение командой оз кеаа Holding Register — зап			запись командой о	Write Single Register
Адрес	Запись/Чтение	Условное имя	Тип данных	Примечание
1	Чтение (03) Запись (06)	POWERLEVEL	Целое без знака	Мощность в нагреватель 0100 – 0%100%
0	Чтение (03) Запись (06)	REGDELAY	Целое без знака	Запись/чтение задержки изменения 060000 мс (выставлять 0)
2	Чтение (03)	INDICATOR220V	Целое без знака	Наличие 220В 1=есть, 0=нет
9000 (2328h)	Чт(03) Зп (06)	BOADRATE	Целое без знака	Скорость обмена 2=9600
20	Чт(03) Зп (06)	CL_CAL_Hi	Целое без знака	Константа тока верх шкалы ток.петли 01000
22	Чт(03) Зп (06)	CL_CAL_LO	Целое без знака	Константа тока низ шкалы ток.петли 01000

9. ТЕМПЕРАТУРНЫЕ УСЛОВИЯ РАБОТЫ ПРИБОРА

Как измерительный прибор, использующий принцип преобразования энергии инфракрасного излучения объекта тепловым приемником, "Кельвин" лучше функционирует при относительно постоянной рабочей температуре (температуре окружающей среды).

Необходимая точность измерения обеспечивается, если температура корпуса прибора меняется достаточно медленно. Если прибор подвергается большим колебаниям внешней температуры ($\pm 15^{\circ}$ C), то для обеспечения точности измерения необходимо выдержать прибор по крайней мере 10 минут. Меньшие колебания температуры окружающей среды требуют меньшего времени выдержки.

10. МАРКИРОВКА

Маркировка прибора должна включать в себя:

- обозначение прибора;
- наименование предприятия изготовителя;
- год изготовления;
- знак соответствия требованиям ГОСТ;
- заводской номер прибора.

11. УПАКОВКА

Упаковка прибора производится по ГОСТ 9181/74 в потребительскую тару, выполненную из гофрированного картона.

12. ХРАНЕНИЕ

Прибор хранить в закрытых отапливаемых помещениях в картонных коробках при следующих условиях:

- 1. Температура окружающего воздуха -40°...+80°С.
- 2. Относительная влажность воздуха не более 95% при температуре 35°C.

Воздух помещения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

13. ТРАНСПОРТИРОВКА

- **13.1.** Прибор в упаковке транспортировать при температуре от -30° C до $+55^{\circ}$ C, относительной влажности не более 98% при 35°C.
- 13.2. Транспортирование допускается всеми видами закрытого транспорта.
- 13.3. Транспортирование авиатранспортом должно производиться в отапливаемых герметизированных отсеках.

14. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

15.1. Техническое обслуживание прибора заключается в периодической очитке корпуса и входного окна прибора от загрязнений. Очистку корпуса и входного окна прибора следует проводить без использования растворителей и других агрессивных жидкостей.

15. Сведения о калибровке.

Калибровка пирометра производится в соответствии с методикой поверки **МП РТ 2049-2014**, утвержденной ФБУ "Ростест-Москва".

По вопросам поставки, ремонта и гарантийного обслуживания обращаться:

компания «ЕВРОМИКС», 129110, Москва, Слесарный пер., д. 3

E-mail: info@zaoeuromix.ru www.zaoeuromix.ru ,www.kelvinrzd.ru

компания « E в p о м u к c » M о c к в a излучения абсолютно черного тела (АЧТ). Излучательная способность АЧТ равна 1,00

ПРИЛОЖЕНИЕ

	Изнущете	н ная аналабиасть на	MOTONI IV	матариалар
Материал	Температура	льная способность не и>-	которых Ет	материалов
материал	температура		-	
Алюминий:	220520	град. С	л уч.	062
	87520	H H	0,008-0,	
- сильно окисленный			0,02-0,3	
- фольга	10030	N N	0,040,	
Асбестовая бумага	40370	N	0.930.	
Асбестовый картон	2530	N	0.940.9	96
Асбошифер	20	N	0.96	
Асфальт	2530	N	0.95	
Бумага:	20	N	0.70 0.	00
- белая	20	N	0.700.9	90
- желтая		N	0.72	
- красная		N	0.76	
- зеленая		N	0.85	
- синяя		N	0.84	
- черная		N	0.90	0.00
- покрытая черным лако	OM	3.7	N	0.93
- черная матовая	1.0	N	0.94	
- тонкая, наклеенная на		N	0.924	
Береза строганая	2530	N	0.92	
Бетон	20	N	0.92	
Бронза:				_
алюминиевая	1771000	N	0,03-0,0	
окисленная	1771000	N	0,08-0,1	
Бумажный картон разны			N	0.890.93
Вода (слой толщиной более		0100	N	0.920.96
Водяная пленка на мета		20	N	0.98
Вольфрам:	120-500-	Н	0,039-0,	
	1700-3100		0,249-0,	
	920-1500-	N	0,116-0,	201
-2000-2700		0,247-0,312		
Гипс	20	N	0.80.9	
Глинозем	2530	N	0.96	
Глина обожженая	70	N	0.91	
Графит	900-2900	Н	0,77-0,8	3
Дерево:				
- белое, сырое	20	N	0.70.8	
- строганое	20	N	0.80.9	
- шлифованное		N	0.50.7	
Древесные опилки хвой	ных2530	N	0.96	
деревьев				
Дюраль Д16220-620		N	0,016-0,	03
Известь		N	0.30.4	
Кварцевый песок2530	ı	N	0.93	
Керосин2530		N	0,96	
Кирпич:			,	
- огнеупорный, слабоизлуча	ающий 50010	00	N	0.650.75
- огнеупорный, сильноизлуч		N	0.80.9	
- шамотный, глазурован		N	0.85	
- то же (55 % SiO , 41 % Al O) 1100		N	0.75	
- то же (55 % SiO , 41 % Al O) 1230		N	0.59	
- динасовый, огнеупорный 1000		N	0.66	
- неглазурованный, шероховатый 1000		N	0.80	
- глазурованный, шерох		N	0.85	
тлазурованный, шерох	ODGIDIN 1100	11	0.03	

компания « £ в р о м и	IKC»MOCKBU	W W W . ZAOE U R O M I X . RU
- красный, шероховатый 20	N	0.880.93
- силиманитовый (33%SiO, 64%AlO) 1500	N	0.29
- огнеупорный, корундовый 1000	N	0.46
- огнеупорный, магнезитовый 10001	300	N 0.38
- то же (80% MgO, 9% Al O) 1500	N	0.39
- силикатный (95% SiO) 1230	N	0.66
Кирпичная кладка оштукатуренная 20	N	0.94
Кожа человеческая 36	N	0.98
	N	
Кожа дубленая	IN	0.750.80
Краска:	N	0.02 0.06
- масляная, различных цветов 100	N	0.920.96
- кобальтовая, синяя	N	0.700.80
- кадмиевая, желтая	N	0.280.33
- хромовая, зеленая	N	0.650.70
- алюминевая, после нагрева 150315	N	0.35
Лак:		
 черный, матовый 4095 	N	0.960.98
- черный, блестящий, на железе 25	N	0.88
- белый 40100	N	0.800.95
- белый, эмалевый на железе 23	N	0.906
- бакелитовый 80	N	0.93
- алюминиевый 20	N	0.39
- жаропрочный 100	N	0.92
Латунь :		
- полированная 100	N	0.05
- отлично полированная 220-330	Н	0,02
-coccabom-732%Cu,267%Zn 245355	N	0.0280.031
- ccccтавом-732%Cu,26.7%Zn 200	N	0.03
- листовая,прокатанная 22-100	N	
- листовая, обработанная наждаком 22	N	0.20
- матовая, тусклая50350	N	0.22
, ,		N 0.610.59
- окисленная при температуре 600°C 200		
Лед гладкий -10	N	0.960.97
0	N	0,96
Лед, покрытый крупным инеем -10		0.98
0	N	0,985
Луженое железо, блестящее 25	N	0.0430.064
Масло трансформаторное 25	30	N 0,93
Медь:	200-300-	Н 0,022-0,024-
500-800		0,05-0,061
- электролитическая, полированная	80	N 0.018
- полированная	N	0.023
- шабренная до блеска 22	N	0.072
- окисленная 50	N	0.60.7
- окисленная 30-330-	H	0,38-0,47-
	11	
520-820	102 260	0,59-0,87
- окисленная	193-260-	N 0,66-0,78-
420-800	. 3.7	0,9-0,93
- окисленная при нагреве 200600		0.570.55
- покрытая толстым слоем окиси 25		0.78
Мука пшеничная 253		N 0.96
Нефть 2530	N	0,95
Никелированное железо, полированное 2	3	N 0.045
	20	N 0.370.48
Нихромовая проволока:		
- чистая 50	N	0.65
чистая, при нагреве 5001000		0.710.79
- окисленная 50500	N	0.950.98
Олово: 30-90	H	0,05
Олово. 30-90	11	0,00

компиния « Е в р о м и к с	WWW.ZAOEUROMIX.RU
- блестящее 25 N	0.0430.064
Пермаллой окисленный 20 N	0.110.03
Пенопласт 20 N	0.600.05
Пластмасса 20 N	0.680.02
Песок речной чистый 2530 N	0.95
Плексиглас 2530 N	0.95
Резина мягкая, серая, шероховатая 24	N 0,86
Ртуть чистая 0-100 N	0,09-0,12
Рубероид 20 N	0.93
Сахарный песок 2530 N	0.97
Свинец: 30-260 Н	0,04-0,08
- блестящий 250 N	0.08
- серый, окисленный 0-200 H	0.28
- окисленный при нагреве 200 Н	0,63
Серебро: 170-830 Н	0,012-0,046
- чистое полированное 225625 N	0.0198-0.0324
Слюда:	0.0170-0.0324
слюда. - толстый слой N	0.72
1 , 1 1	0.810.85
в силикате	0.70 0.04
Смола N	0.790.84
CHEF -10	0.800.85
Сталь углеродистая: 170-1130 Н	0,06-0,31
- прокатанная 50 N	0.56
- шлифованная 9401100 N	0.520.61
- с шероховатой поверхностью 50 N	0.950.98
- ржавая, красная 20 N	0.59
- оцинкованная 20 N	0.28
- легированная(8% Ni; 18% Cr) 500 N	0.35
Сталь нержавеющая:	
- полированная 2530 N	0.13
- после пескоструйки 700 N	0.70
- после прокатки 700 N	0.45
- окисленная при температуре 600°C 200600	N 0.79
- окисленная, шероховатая 40370 N	0.940.97
Стекло оконное 2530 N	0.91
22100 N	0.940.91
Стекло 2501000 N	0.870.72
11001500 N	0.700.67
Стекло матовое 20 N	0.96
Соль поваренная техническая 2530N	0.96
Спирт этиловый 2530 N	0,89
Сукно черное 20 N	0.98
Текстолит 20 N	0.93 0.02
200 N	0.15
Титан полированный 500	N 0.20
1000	N 0.36
200	N 0.40
Титан, окисленный 500	N 0.50
1000	N 0.60
Ткань :	10.00
ткань: - асбестовая N	0.78
- хлопчатобумажная и льняная 2530	
Уголь каменный 2530 N	0.95
Фарфор белый, блестящий N	0.700.75
Фарфор глазурованный 22 N	0.92
Фибра 2530 N	0.93
Фторопласт 20 N	0.95 0.02
Хлопок-сырец различной влажности 2530	N 0.930.96

компания « Евромикс» Москва — WWW. ZAOEUROMIX. RU

Хром неполированный	38538	N 0.080.26
Хром полированный	50 N	0.080.10
Хром полированный	5001000	N 0.280.38
Хромоникель	521035	N 0.640.76
Цемент	2530 N	0.93
Цинк:	30-260 N	0,02-0,06
Окисленный	30-200-530 N	0,28-0,14-0,11
Чугун:		
- обточенный	830990 N	0.600.70
- окисленный при нагреве	200600 N	0.640.78
- шероховатый, сильно окисленн	ый 40250	N 0.95
Чугунное литье	50 N	0.81
Чугун в болванках	1000 N	0.95
Шеллак черный, блестящий на ж	елезе 21N	0.82
•	0100 N	0.970.93
Шлаки котельные	200300 N	0.890.78
600	01200 N	0.760.70
1400	1800 N	0.690.67
Штукатурка шероховатая,		
известковая1090	N	0.91
Эбонит	N	0.89
Змаль белая	20 N0.90	
Ячмень, просо, кукуруза	2530 N	0.95

ПРИМЕЧАНИЕ: *1. N - излучение в направлении нормали.*

- 2. Н излучение в пределах полусферы.
- 3. Линейная интерполяция между точками достаточно точная.
- 4. Литература: Физические величины. Справочник.

Энергоатомиздат. 1991 г.

Если излучательная способность объекта неизвестна, то ее можно определить с помощью следующего метода:

- 1. Образец материала нагревается до определенной температуры, как-либо точно измеренной.
- 2. Температура поверхности образца измеряется пирометром. Значение излучательной способности подбирается до тех пор, пока индикатор прибора не покажет известную температуру образца.
- 3. Найденное значение излучательной способности фиксируется и используется для дальнейших измерений температуры этого материала.